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1. INTRODUCTION

A number of Important recent advances in econometric theory are

related to the methods of truncated regression model - the regression

model in which range of the dependent variable is restricted to some

interval of (- ,, usually the non-negative half-line, such as the income

of an Individual. Powell 1(6j",- [7] used the L-norm criterion with some

modifications in estimating the regression coefficients in truncated linear

models. He proved the consistency and asymptotic normality of his estimates

under a set of conditions. On the other hand, Nawata's paper%-T uses the

ordinary L2-norm (least square) criterion, along with a grouping and adjust-

ment of the observed data. In his view, his method has the merit of easy

computation compared with the method of Powell.

In- this paperwe borrowthe basic idea of Nawata in grouping and ad-

Justing the observed data. But we shall make simplifications In the proce-

dure of grouping, which enables us to make substantial extensions of the

results of E!; under weakened conditions. . -4 t, 'Vr ,, { , ,

.I. . , .

* S

-5, -
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2. ESTIMATION OF PARAMETERS IN NON-TRUNCATED CASE

2.1. Ae8wnotion of the Model

Let (X1,Y1), ... , (Xn,Y n) be iid. samples drawn from a RdxR -valued

random variable (XY). Denote by m(x) the median of the conditional distri-

bution of Y given X = x. We suppose that the conditional distribution func-

tion has a form

P(Y < yIX = x) = F(y - m(x)) (2.1)

where F is a fixed distribution function which is not assumed to be known.

Under this assumption we can give Yi a convenient expression as follows:

Yi = m(Xi) + ei, i - 1,...,n (2.2)

where e,, .*.. en are itd. with common distribution F, and Xl, ... , Xn,

e1, ..., en are mutually independent. The probability measure of X will

be denoted by v. In this section we make the following assumption concern-

ing F and V. Further assumptions will be introduced when needed.

10. F(O) = 1/2, f(x) = F'(x) exists in some neighborhood of 0,

f(O) > 0 and f'(O) exists.

20. V = COV(X) exists, and V > 0.

30. V has no singular component. If V has an absolute continuous

component with density g(x), then for sufficiently small a > 0, there

exists an open set Ga such that the symmetric difference between Ga and

{x: g(x) > a} has Lebesgue measure zero.

In this section we assume that the median-regression function m(x) has

a linear form

m(x) - a + O'x (2.3)

I
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and the problem is to estimate the parameters a, 6, using the samples

(xiY), i = 1,

We shall use 11all to denote the Euclidean length of vector a, and a(u)

to denote the u-th coordinate of a. If A is a vector or matrix, we use IAI

to denote the maximum of the absolute values of the elements of A.

2.2. The Main Result of Section 2

Choose £1 e (0, 1), 12 ( , 1- de1 ), Ln = n" , co > 0. Decompose

Rd into a set J* of supercubes having the form:

{ix ( )  ,x (d)): ai n < x M < (a i + 1)tn. i - 1,...,dl.

ai - 0,l,±2, i = l,...,d. (2.4)

For J 6 J*, use #(J) to denote the number of elements in the setn

il{X, . . . ,Xn} . Write

{J: J 6 J, #(j) > cone2 I = Uni,...,jncn1  (2.5)

We have

cn < cI < n d£1£ (2.6)

for some c' > 0, when n is large. Further, write

ini n1 {Xl.., n  {Xni(1),...,Xnt (n0)}.

By definition,

£2
nt > C0 n , -- 1,...,cn. (2.7)

We shall write Ynt(J) and eni(J) for Yk and ek, when Xni(J) - Xk. Put

Fl•• mt•• w. • •• • , ~ .. ,•• , • " q. o m
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Xni a IX(J/
j=1

Yi= med(Yni(l)....vni(ni))

en.i 0ce ni(1 en(n)

Nn = n1 + n2 + **+ nc
n

n n Cn

"n = niXni/Nn Yn. 2 ij niYni/Ni. nil,.ini/

Wn= diag(n ig.*.ncn) Pn. = Xjn)WnXn)

Define

On = n (jn)Wn(n) & a+ n( 'd +n

nd Onk, () k = 0, 1, ... , by the following induction process. Set

~~~~(0) (0) =y-~~O 29
n n (jn)Wn(n)' na n )n~n

which is the solution of the weighted least squares problem.

C~n n (Y -a- X'.8)2 = mi!.

1i1 nii '

Suppose that ^(k) and &(k ) have already been defined. Putn n

(k1 .-((i x 1 ~ k), l ,n 1  (2.10)

Yn 0) * -9 Yni%% - (%,~j - Xi On '
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(k+)= med(Yvn i 1 (j): j - 1,...,n.) (2.11)
ni ni1

C n

- =(k+l) c. (k+1),Yn iin i Yni /N n

Y(k+l) - (k+1) ,y(k+l))
(n) n1 ncn

and then define

i(k+l) = n ,  (k4l. ) = k -(k+l) (2.12)

n n)WnY(n) ' n nBn

which is no other than the solution of the weighted least squares problem

n (k +1 ) , _ 1 2
"lni('Yni - a - Xn) = min!.

The Y(k+l)(j)'s, defined in (2.10), is an "adjustment" of the original

observation Y ni(j) of the dependent variable Y. For if we know B, we would

,set Y* ( ) = () - (Xni(j) - Xnt)'0, and get the exact model Y*. =ni n nij) -Xnini
+ Xlio + eni, t = 1, ... , cn. This kind of adjustment was introduced by

Nawata (5], who used it to make a "first stage" estimate of a, 6, which

are used to form a "second stage" estimate of a, 8, in case that the depen-

dent variable Y is trucated. We shall use this idea in the next section

also. The present work differs from that of Nawata's in some important re-

spects. First, the decomposition of the range of independent variable is

greatly simplified, and the conditions imposed on this decomposition is very

simple, as compared with the very complicated one introduced by Nawata.

Second, we allow the number of sets in the decomposition to go to infinity,

which is conceptually reasonable and enables us to reach the optimal covar-

lance matrix of the limit distribution. Third, we do not assume that the
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range of the independent variable is bounded. Fourth, the number of

iterations in our iterative process has a predetermined bound (see Theorem

1 below), while in [5] this number is indefinite. From a practical point

of view, it is not reasonable to define an "estimate" by infinite number

of iterations.

Now we state the main theorem of this section:

THEOREM 1. Choose an integer r such that

re, < 1/2 < (r + l)eI. (2.13)

Then under the conditions stated in Section 1, we have

.(r+l) a

rn / - N(O,A 1 /4f2(O)) (2.14)

l (r+.1l-°pn I 2 €(n

)(r+) - 0 (n (r+l) (2.15)
n n p n n8

where A = (X)ij is a (d + 1) x (d + 1) matrix, with

0= 1, A . = A. = EX(j ) 1 . = E(X')X0j )), is j = . od.00o 03 Joj =  j lj ' '"

(2.14) means that, as an estimator of (,a), ( (r+l) I r+l))possesses,n posse
an asymptotically optimal covariance matrix.

2.3. A Lemna

The proof of Theorem 1 depends on a limiting theorem concerning the

linear forms of {eni,...,encnl, which we consider separately in this sub-

section.
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LEMMA 1. Let c1, c2, ... be natural numbers such that

lim Cn/In = 0. (2.16)

For each n, give a set of iid. variables {e(O): jl,...,nt, i=l,...Cn),

Here

n + n2 + ... + nc < n (2.17)

lim(n1ogn)/min(nl....,nc) = 0. (2.18)
n4~ fn

(n)
Assume that the distribution function F of ell does not depend on n, and
F satisfies condition 10 of Section 2.1. Let a ni(j): i=1,...,c n j=1,...r

be constants satisfying the following conditions:

C n

iniani(J) = 0, j = l ...,r, n = 1.2,... (2.19)

Cn

lim na nI (jl)a ni(J2)/n (2.20)
i=1 ni 2 (JlJ2

exists and finite for jlj 2 =

Define e.n = med(e !ln...e i- n ) ) , i = i,...,c n, and1 119~~ ic n n

C
n n (n)

= )e i  n, = ,.. ,r, n (En i nr .

Then we have

rn L+ Nr(0,A/4f2(0)) (2.22)

as n -, , where A is the matrix with elements Xjlj2.

7i~
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Proof. Consider first the case r = 1, and write for simplicity

ani(l) = ani' tnl = tn' X11 = '2.

Given 6 > 0. By the assumption made on F, we have F(6) > 1/2. Using

an inequality of Hoeffding [4], we get

n i
P(efn) > 8) _< P(I- I(e1() > 6) - (1 - F(6))j (n F(6)

i j=1

<2 exp(- ni(F(6) - 2/3).

From this and (2.18), we have

P(en) > 6) < exp(- v ), i ...
P~ I  _ _ -- = I , n

for n large. Similarly it is shown that

P(ein) <-6) < exp(- v ), i = ...,cn

for n large. Hence for n0 large we have

~ n P(e~n)I > 6) < e-nI -- - I n"- <nan 0 i=1 n=n0

Therefore, wpl (with probability one) we have

(n)

e !n) < 6, 1 = 19 .cn (2.23)

for n large.

Denote by {Ui : i=1,2,..., j=1,2,...} a family of iido random variables

with common distribution R(0,1), and

u1n) = med(Ui,... Uin), i = 1...cn.

By assumption on F, the inverse function F 1 exists in some neighborhood of

1/2, so we can find some 6 > 0 such that the distribution functions of

FlI(U~n)) and eln) coincide on (-6,6). From this and (2.23), it is seen

-. i - - %



that the assertion

En-L- N(O, a2/4f2(O)) (2.24)

is equivalent to

En n i na niF'l(ui n/  -  N(O, a2/4f2(O)). (2.25)
1=1

According to a theorem of Csrgo and Revesz concerning the strong

approximation of quantile process (see [2]) there exist independent N(O, 1/4)

random variables nni, ... , ?nc n , such that

'1' ~n)- 1 nni n 1/ 2 (A log n + Z))< Be-cz, for IZIcD' (2/26)

where A, B, C, D are positive absolute constants. Choose Z = 5log ni/c

and put K1 = A + 5/c, we have

Cn

ui  - - nni Kn 2logn.)<B r n5 /2

n=n0 i=1( i ni ii < B n n 0

Therefore, wpl we have

Iu(n)- ( + n/vr-i)' J Klnllogni i = 19...,c n  (2.27)

for n large. From this it follows that (2.25) is equivalent to

cn

1* 0 =1ntanF' 1 + nni /vn + eni)/v-i- N(O, a2/4f2(0)) (2.28)

where enil t = 1, ..., cn are random variables such that
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len1. KIn lnlog ni, i = 1,0.6Cn, n = 1,2 ... . (2.29)

Since 2nni - N(0,1), it is well known that (see [3], page 131)

p(Innl/rii > e) < 2 1 exp(-1 (2/n-. )2  e- /

I - - .ep-2 vi E I)I

for i = 1, .. cn and large n. Hence we have for large n0

am Cn[ P nil/n'r" > 0)< r 'n <

nno i=1- n=n0

which implies that wpl we have

In, I/n7 < c i = 1,1...cn (2.30)

for n large. Considering (2.29), (2.30), and the assumption made on F,

we get

F11+ n + e /inu , + ) (2.31)ni i ~ni TM Yni i ni

+ 1(r + eni)(nni/pn, + en) 2

where r = -f'(O)/(f(O))3 , and Ent' 0' C., are random variables such that

lim max(cniI,...,lnc n) = 0, a.s. (2.32)
fl-*a fl

From (2.31), we can rewrite (2.28) as follows:

n= + . + T (2.33)

where
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T Cn
Tnl ' - . vlnnnnlVnf(O)

C n
Tn2 = Ijl i ninnilVfO

Cn +2 rf(0)
Tn = I1-1 (r + nn Ianfnn)

cn
Cn  )2.a.lfo

Tn5 " .ifo(r + c1n inairl ()

Cn n 2  2z

Since it=I n ni/n -* a we have

T L - N(O. a2/4f2(0). (2.34)

From (2.29), one finds

cn ni ,rilog n1
- Tn21 _< il -lanil ni Kllf(O). (2.35)

From (2.17), by Schwartz inequality,

(Cn \ i 2 C n cn  2 2

S-1n an t  1. 1

We see that

Cn
sup I nilanil/n: n-1,2.... K 2<- (2.36)

Also, by (2.18), it is seen that

max{n log nt/n 1 : l-1,...,c n} - 0, (n * -) (2.37)

From (2.35)-(2.371, one gets
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Ilim TO 0. (2.38)

For T we note that EN2 1/4, so by (2.18) and (2.36),

Cn 2 cn Cn n la I Fn

E( Ianihnibi- Ju ! nil / rW i n n i

Considering this and (2.32), we get

Tn3 -PO,+ 0.. (2.39)

Tn4 and Tn5 can be handled in a similar way, obtaining

T 4 -+P 0, (n -). (2.40)

Now (2.28) follows from (2.33)-(2.35), (2.39), (2.40). This proves the

lemma for r = 1.

In order to prove the lemma for general r, take arbitrarily constant

vector t - (t,9...,t)'. then

Cntoin) n(nt'n uI= nfia ni e /

where

r
an i i t ant ( j ) '  = 1 ...,mcn. (2.41)

From (2.19) and (2.20), it is readily seen that

Cn
Jul niai O, n a 1,2,...

lrn 1nn a 2/n t'At.
n -

Hence, according to the proved result for the case of r -1, we have
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t&no N(O, t'At/4f 2(0)).

Since this holds true for arbitrarily chosen to (2.22) follows, and the

lemmua is proved.

Conditions of the lemmna can be somewhat weakened. Also, the lemma

can be proved by resorting to classical methods of Central Limit Theorem,

but verification of the conditions will be quite complicated.

2.4. Proof of Theorem 1

First note the simple fact that if u 1 = u + tig + his a Is 1, 0 k. ,

then there exists a vector t in the convex hull of {tlI 9*st kl, such that

med(uI .6.u k ) = u + tog + med(h l,...,hk ). Using this fact, one sees that

there exists X* G n (X~i depends upon X.q , 1 1, .... n. and a, o)

such that

Yn = X+X O+Cn e~ + X;o+ eni + (X~1 -i PB (2.42)

Therefore, on putting X (XIn)X )i n* oneiista
-(o) - ; o

On n n (;~ n)Wn(X~n) - X(n))B (2.43)

We have shown in (1] that under the assumption of the present theorem,

one has

11. Pnn V, a.s. (2.44)

Also, the absolute value of the (u, v) element of n-1 Xi n) WnX) (n))
does not exceed

Cn n~ X u -T u n1 n j X~ ) I'~ ) l/ . ( .5
1 niX - n IIX(n) - X(n)I1/n - 1nu n . (45
Julii
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n-Cl
Here we used the obvious fact that I 'tn) - X(n)I < n . By an argument

similar to that used in [1], it can be shown that

-lm nix(U) -" (u)/n - EIX(U) - EX(u)i <  a.s. (2.4)

From (2.43)-(2.46), it is readily seen that for any given a > 0, there

exists (finite constant) m0 such that

p(i0) - I<mon- > - (2.47)

for n large.

Now it follows from Lema 1 that

n - a) L N(O, V/4f2 (0)). (2.48)

The argument is as follows. By definition (2.8), and (2.44), one sees that

(2.48) is equivalent to

n 112V IXn)Wne(n) * N(o, v1 /4f2 (o)). (2.49)

Given X, X2, ... and consider the conditional distribution of Tn 0

n'l/1V'IXin)Wne(n)- then this is just the case studied in Lemm I with

r - d, and

.ancn( 2 \
anl (2) an(2) . v1Xin).

anl(d) anc (d)

' i

It can easily be verified that the conditions of Lemma 1 are met, with

"_

~ ~ .t;A4 *, -U ~ *I~*** -
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A a lim V'XnWwnX(n) In V'VV V a.s.

So wpl (2.49) holds true conditionally given X1, X2, ... , and it still

holds true unconditionally. From (2.48) it follows that

V'I n -.01 a Op(1). (2.50)

Combining (2.47) and (2.50), one sees that there exists i0 such that for

n large,

( ° - <l 1) > 1 - ., t1  min( ,C1 ). (2.51)

By (2.42),
Cn

Y In - + N +I + (I )' . (X = n /X*n).
n n n n n i i

Hence by (2.8) and (2.9)

() 1 (0)( 'n ( )n). (2.52)On " n "]n n n + ( n

"€I

Since X * EX a.s. and <- I _ n , from (2.47) and (2.52) we get a

constant t0 such that for large n

P(I; ) - ; I < t.on  ) > I - 5, (2.53)

Put k - 0 in (2.12), and notice that Y = ) + Xn i)e + enl ().

we get
0(1)(j) a X'i +(0 a +e
ni nl + a + en(J) + (Xni - Xni(J))'(' nO - a).

Again there exists X** in the convex hull of Xni - Xni(j): j-l,...,ni},

such that

y(") - X' 8 0) B) (2.54)ni hi ni +Xn('n(on
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Since IX**I < n , from (2.51) and (2.54), it follows by an argument used

earlier that there exists m such that for large n

P(I(1) - I < mln t+E1) > 1-6. (2.55)

Combining this and the fact that Ion - 81 0 p (n"1/2), we find 1l such that

for large n

(I~() -t2  1
Won - 8I1 < I ) . 1 - 6, t2 -min( , tz+c]). (2.56)

From (2.8), (2.12) (setting k - 0) and (2.54), one gets

&(1) - ; n ) -"n(
1) - n). (2.57)

-C1
From (2.51), (2.55), and the fact that <X(*I - n , we find t, such that

for any large n

- n .< 1n
' t  l ) > 1 - 5. (2.58)

In deriving (2.58) one should also note that, as shown above, the event"(t) mn1+€1)~ ofn'Z}

n-i(') - inl < "ti ) is a consequence of {1n - 8 in

Continuing this process, one finds generally that there exists constants

Mk' ;k and tk, such that for n large we have
.() ;-(tk +El)

p( -k n1 - mkn )> 1- (2.59)

p( - 1 < mkn 'tk+l) >1-6 (2.60)

(k) -(tk+C I)
P( lk . .1 tkn  )> 1 6 (2.61)

with

. V %m* ~ *~ , .~~~'
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tk+1 =nmin( , tk + £1).

Since re, < 1/2 and (r + l)c1 > 1/2, we have ti =i I for i < r, and so

tr + C1 = (r + 1)cI, tk+1 = 1/2. Therefore, on putting k = r + 1 in

(2.59) and (2.61), we get (2.15).

In view of (2.15), (2.14)'is equivalent to

r (()] __L Nd1 (O,A-1 /4f2(O)) (2.62)

As ;n and &n are linear functions of e(n) , (2.62) can easily be proved by

using Lemma 1, the argument is just the same as we employed in showing (2.49).

This concludes the proof of the theorem.

The assertion (2.14) still holds true when r + 1 in the left hand side

of (2.14) is replaced by r, or by some k > r + 1. But iterating beyond

(r + 1) rounds is non-profitable, in view of the fact that tr+1 - tr+2 =

= 1/2.
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3. ESTIMATION OF PARAMETERS IN TRUNCATED CASE

In this section we study the case in which the dependent variable

is truncated at zero. If the original values of Y are YI "". Yn . then

actually we observe

Yi " Y iI6i > 0), 1 = 1,...,n.

Introduce J* as we did in Section 2.2. Choose constants c' > 0,

el 6 (c1, 1 1 ), where £1 has been introduced at the beginning of Section
nt

2.2. Divide J* into three disjoint parts. Let Hi = 41((Yni) > 0).

* . {Jni: Hi > ni/2 + c'n 1  i = 1. ,n)anl •i ' ""

* = {Jn: H < n 1l2 - c'ni . i = 1 . n)an2 ni ' •

=*ZJ - (J*
n3 n nlUJ*n2)

For convenience, we shall in this section write x'y for a + x'S, by intro-

ducing ; = (l,x')' and y = (c,8'). We use x and a to replace x and y.

In this way we change a + x'a to x'a.

The following lemma will be used in the sequel.

LEMMA 2. wpl we have for any given ei < ei.

-1+Jnt g 'ni .hi -l"X n ., 31

1 i = 1,...,n (3.2)

ani * Jn2  ni(

for n sufficiently large.

-I +€

Proof. Assume that X.ia < nil , thennl

n(j) < n I c + n < ni  + n1  < ni  * j = ...,n

for some co < ei. Hence, in order to have n J 1, the inequality
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ni +
Hi = ,[(eni(j) > -ni  ) > 1ni + Con

Sj=1 fl 1 ca1

must be true. On the other hand, from the assumptions made on F (see

Section 2.1), one can find constant c"> 0 such that

a "1+£O "1+C0
p = P(eni(j) > -ni  ) < 1/2 + con

Using Hoeffding's inequality 12], and abserving that
£2

£1 < 1/2 -*' > I-1 > 1/2, ni 1> cOn (see (2.7)),

we get for n large

-1+e 1 '0
P*(J J*) < P*(IH./n i -PI > c'n - c n.

ni ni 1 1

< P*(IHni > c'n- ) < 2exp(-n (1con- ")2 /3) < n'3  (3.3)

simultaneously for i = i, ..., Cn, where P* = P*(XI,X 2 ,...) is the conditional

distribution given XI, X2 , . . . .  Since (3.3) holds for each (XIX2,...)9

we get for n large

P(Jn 6 Jnl) <-3 (3.4)

simultaneously for i = 1, ..., cn. Introduce the event

En = {for some i = 1,...,cn. Xni < n. but Jni J
n n n a In" i n

Then since cn < n, we have P(En) < cn/n 3 < n 2, yielding

P(En iO.) = 0

-l+C
which means that wpl X1'. < ni +Jni I for all i = l, ... cn

and n sufficiently large. This is just (3.1). (3.2) can be proved in a

similar fashion.
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3.1 Estimation Using Onl J* -cells

If a cell Jni belongs to J* , then, although the observations of the

dependent variable related to this cell might have been truncated, the med-

ian of the original observations can still be calculated. Therefore the

method of the previous section can be applied to the collection of these

cells, yielding an estimate for a.

In order to avoid the introduction of numerous new notations, from

now on in this section we shall redefine Jnl' ""' * ncn as the elements in

J* Other notations in Section 2, too, are redefined in accordance with

this change. For instance, the symbol Nn should be understood as

"n * i=J G J* } ni •
n ni nl

Ending this process we get a redefined estimate of a (the original (a,8')),

^ ( r+l )
which we now denote by nr "

For this estimate the following theorem is true:

THEOREM 2. Suppose in addition to the conditions of Theorem 1 that

P(X'a>O) > 0. (3.5)

= COV(XIX'a>O) > 0. (3.6)

Then, as n - ®, we have

Sn _ a) L, N(O, V1 /4f2(0)).

Proof. On account of Lemma 2, this theorem can be proved by largely

the same method employed in proving Theorem 1. So the details are omitted.
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3.2 Tobit-Type Estimate

In this subsection, in addition to the cells in J*1 , use will be made

on cells belonging to in order to form a Tobit-type estimator for a. It
A(r+l)

is believed that by so doing we are able to make some improvements on cm

discussed earlier. As Nawata declared in [5], his simulation results in some

cases seem to give support to this belief. Theoretically, the problem is

complicated as the probable improvements are likely to depend on actual situa-

tions (underlying distributions, sample sizes, method of decomposition of the

range of independent variables, etc.) and would be difficult to justify in a

reasonably general setting.

Now use Jn, J.Ind to denote the cells belonging to J* The center
n

of Jni will be denoted by X ni , i = 1, ... , dn.  Put mi = #(J ni) (the number

of elements in Jni n {X,...,Xn}), and

d n  C n  _ 1( +

R cnrl(- X'/) I a exp[-n Y r -) )2/2a2] (3.7)
i=l i-ni i=l i ni ni

where 0 is the distribution function of N(O,l).
If (a*,a*) maximizes L(a,a), we use a* as an estimate of a. This kind

n n n

of estimate was first considered by Tobin [9].

We shall prove the following theorem.

THEOREM 3. Suppose that in addition to the conditions of Theorem 2,

we have

EJXJ2+6 < - for some 6 > 0.

Choose £1 < 6/(4+26) (see the beginning of Section 2.2), and e in (3.1), that

> 1 - 6/(4+26). (3.8)
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Then, as n , we have

v'Nn(a-a) L) N(O, i/4f2(O)) (3.9)nfn

where V is defined in (3.6).

This theorem indicates that in the asymptotic sense the Tobit-type

estimator a* makes no improvement over a , which is the ordinary LS esti-n n

mator based upon only the cells in J* Needless to say that in practical

applications the sample size n may not necessarily be large. In such cases

the question remains as to which one is superior over the other.

In defining a* we make no use of those cells which do not belong ton

J U 2 " From a practical point of view this poses no serious problem, as

we always can choose c0 , £2, ci, e' small enough to allow the inclusion of

more cells. Theoretically speaking, as long as P(X'a =0) = 0 (which is the

case when X is non-atomic), the proportion of sample points not used in the

definition of c* goes to zero as n . Nevertheless, it is interesting ton

ask whether or not it is possible to invent a trick which enables us to use

all sample points in the definition of a*, while allowing the number of cells

to go to infinity and retains the basic asymptotic property of a* as describedn
in Theorem 3.

The proof of Theorem 3 will be preceeded by several lemmas.

LEMMA 3. Suppose that &1' 2' ... is a sequence of iid. random vari-

ables, and EIIa < - for some a > 0. Then

lim n'1 /amax(l ll,.•.,l 1)  = 0, a.s. (3.10)
n--n

Proof is simple.

LEMI A 4. Denote the residual sum of squares by
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Rn= n (r~+l) - &r+l) )2 (.1
1 ni

Then, under the conditions of Theorem 2, we have wpl

2 R/C a2n R n n o9 (n-) (3.12)

where

2 = (4f2(0))- 1  (3.13)

P* = P*(X 1,X2,...) = the conditional probability

measure given X1, X2, .... (3.14)

Proof. We proceed to show that WP1 there exists random variable

2nn -.cnd, such that

R n/ 2 . nn - OP( 0 c/n 1 ) O, (n-). (3.15)

From this, (3.12) follows at once.

In order to prove (3.15), we rewrite Rn as

Rn =y(r+l),(gn-gnX (  P-1X! W )yv(r+l) (.6
n= n n n(n)n (n)n n (3.16)

Notations involved are defined in Section 2.2. Put

Zni = Xnia + eni, i = I,...,c n 9 Zn = (Znl,**Znc n

It is not difficult to see by definition (2.10) and Theorem 2 that

y(r+l) = Zn + &n' n = ( n""' ncn)' (3.17)

where Enl' ""' &ncn are random variables uniformly (ip i) of the order
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-0/I2+ei)
0 (n as In - .which means that for arbitrarily given e > 0, ap
constant M exists so that for In large

P~& M_ n~l2£) i ... 9c ) > 1 - C. (3.18)

Put

R ,w (3.19)

Then by exactly the same way as in Theorem 1 of [1), we can show that wpl

there exists n~ -2 suhtan Xc n-d'suhta

/a2_n-P -0. (3.20)

This is true because the strong approximation of eni in [1] is valid to eni

in this paper also, as we indicated in Lemmna 1. Now

IRn-Rn 'Wn n +2 ejn) (Wn WX(n) P'1 ' W)nI (3.21)In nl- &nnX(n)W n*

From (3.18) we have

By Schwartz inequality, writing Q n = WIn - WN P1lS~ W I, we get

(ei)n) 2 n e jn)Qn e(n)CQnn

e in)Qne(n)*&n n n

From this and (3.20), (3.22), we have

2 -2c 1
(eln)n~) 0p (InIn(.3

Now (3.15) follows from (3.20)-(3.23) and Lenmma 4 is proved.

i d-d
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LEMMA 5. Under the conditions of Theorem 3, the sequence {fa} is

bounded in probability.

Proof. First %-se make an estimate on L( r+l) n  For this purpose

note that by Lema 2, wpl we have

-]+cl

X n , < n 1 ,..Cn (3.24)

for n large. By Theorem 2, - &(r+l) = 0 (nl/1 2 )• and by Lemma 3 (consider-n p

ing that E1X 2+6 < -) for arbitrarily given c > 0, we have for n large

a (r+l) )). n -6/(4+26) -6 9)>I-C.(25
P(Ini(t"rn)I <  , i~l,..cn) > 1 - c. (3.25)

By the choice of c , -1 + C > -6/(4+26). Hence from (3.24) and (3.25), we

have for n large

( r+T) -I :P(X' n- , i=1,...,cn) > 1 - (3.26)

Combining this with (3.12), we have for n large

-(r+l) 1 +E n ; < • I1 - E. (3.27)
-ni n 7 1  nil., n <

Since mi > C n (see (2.7)), and ej > I - 6/(4+26) > , we have

a 0 - c) > 0

and

S2 a 2a
m m (m I  = mi > Con , 1 - 1 9 - dn .

Since *(t) > 1 - (*2- t) exp (- t2/2) for t > 0, and log(l -x) > -2x for

x > 0 sufficiently small. We see that, in case the event appearing in the

left hand side of (3.27) occurs, we have
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-2 2a 2 E2
log IT *(-/C) -2d exp(- c n /80 )/(V2nc n a0)

>--k- 0. as n-. for any k>O0. (3.28)

Therefore, for arbitrarily given c > 0, when n is sufficiently large,

we have

P(L( jr+I). >~ CY n 1n1 - E. (3.29)

But i f a > re ca,. we shall have

L(a, 0) < aii < 1 n

for any a and n large. From this fact and (3.29), we see that

N < 254 an >l1 - E (3.30)

for n large, and this concludes the proof of the leowa.

Now we can prove Theorem 3. Given E > 0, for any a with 1100-~ .;r11~i

> e//ri, we have

log L(c0, a*) i -n log (; - -: cni X1 %
n 2a * 1.1

-n log a* -R /2c*2 (a, a (r~l))tP N(c r~l
nl n n - 0 ^n nO0 n

We recall that P X' )WnXn) Since P n/n - A - COY(XjXa> 0) >0, we get

wpl for n large

log L(cao, a*) < -n logo a* na - )c* X2,/2 (3.31)

simultaneously for all asuch that IMu - anrl 1 > Efv , where x > 0 is

the smallest eigenvalue of A.
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On the other hand, (3.28) still holds true when an is replaced by any

Go > 0. The convergence to zero would be uniform for o' < 2aO, in case

that the event appearing in the left hand side occurs. Therefore, in cases

that the events appearing in the left hand side of (3.26) and (3.30) both

occur, we shall have

log L( &(r+l) , ) > -logo*- R - (n

n n - n n n n(

where 11. = 0. From (3.31) and (3.32), we get

P(sup{L( i0r): o ( 10 - c/1rn < L(&(r+l) ,0*)) > I - 2c

for n large. This implies that

p(II 11 -l*_ -( r+ l l~ -> r/n) < 2c

for n large. Therefore

n (.0 (r+l ) , (n *- a). (3.33)"n n"

Now (3.9) follows from Theorem 2 and (3.33). This concludes the proof of

Theorem 3.

23.3 Eatiaztion of o

Under the method of estimation of the present paper, from a large-sample

point of view, a2 defined In (3.13) plays the role of error variance.0
similar to the case of a, we can define two estimates of ao. One is

a 2 which uses only those cells in J* and is the common estimate of error

variance based on the residual sum of squares. Another is o*, which is a

kind of maximum likelihood estimate in the Tobit model. The following lemma

reveals that these two are asymptotically equivalent.



LE4 A 6. Under the condition of Theorem 3, we have

na(* n) a 0, a.s. (n *-) (3.34)

for any constant a > 0.

Proof. By Lema 5, (3.28), we have wpl

dn  dn

log R O(-Vi.X'.a /o*) - log ii *(-viTXi &(r+l)/n < n-k (3.35)Jul i-.;ni 0 n i-1-1n

for n large, where k is arbitrarily given. Further

Tn -o n o*-l x[n~ (r+l) Xn 2/2 1

C

- log ,. l en (..n,'( ), . - x.1,(r"l))2/2o 2J

"yn -ON +--Y ntnn2*1 1P n(~)X

- cn log o + c log o.

Since

cn  cnc n(Y(r+1).X 2 2 > n (Y(r+l).Xn
1 &(r+l) )2 Rj,n1 n .ni'nn ni • n

we have

Tn < R ( -*2 _ 2 )/(2a 2 a - c log(G*/ n)
n nn n nn n n n

= Cn[( -x2 )/2 + log x] -cnIx -112/2 (3.36)

whore x a /a*. Hence, if Ia /a*- 11 > en , then, by (3.35) and (3.36),n n n n

we shall have, on taking k 2a + 1 in (3.35), that

A, i
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log i(a*. C*) - log L(& r+l) <o 0 (3.37)

for n large. But (3.37) is impossible as (cx*,a*) maximize L(ci,a). This

shows that wpl we have

n'~o) n

for n large, and (3.34) is proved.

THEOREM 4. Under the conditions of Theorem 3.

1 0. If X is purely atomic with c distinct atoms, d < c < mthen as

n

2a2LX2_ *12 L 2 (3.38)

2 0. In other cases we have as n -*

or-(a2 _ 2) v L (N )(3.39)

v?,-(0 *2 _GZ)17 L. (N,0) (.0

Cnn 0 (.0

and

v2c 7/0 - /(c - d) ---* N(0, 1) (3.41)
n n0 n

-~-*/ /2(c --d) -L N(0,l1). (3.42)

Proof. In case 10 we have wpl cn a c for n large. By (3.15), wpl,

under P* we have o2/2 .L ,2_ Hence this is also true unconditionally.
n/00 c-d'

This proves the first assertion of (3.38). The second follows from the

first and Lemma 6.

In case 20 we have c n 4 ,a.s. From (3.15) and the central limit theorem,

wpl, under P* we have (3.39). So (3.39) is still true unconditionally. (3.40)

follows from (3.39) and Lemma 6.
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(3.41) follows from (3.15), and the following two facts:

a) if' - X2 then v/2&- L2i-1 N(OI) . as nn n n

b) ~'+ aTX - r - 0, as x -and lii a (X)/& 0.
x-OW

(3.42) follows from (3.34) and (3.41).
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4. TESTING OF LINEARITY

In practical applications we are often not sure that the regression

function (the conditional median of Y given X) is linear, and a test for

this hypothesis is desirable. In this section we shall propose such a test.

The idea behind the test is quite simple and is similar to the one

proposed in [1], where the regression function is defined as E(YIX = x) and

no truncation is allowed. From now on we use H0 to denote the linear hy-

pothesis (2.3).

If (2.3) is not rure, then the residual sum of squares Rn , defined by

(3.11), tends to become larger. Therefore a reasonable test of H0 is to

reject it when

Rn > C (4.1)

for some C, and accept it otherwise. C is chosen according to the pre-

assigned size %. In order to do this, we have to find an estimate a2 ofn
o (1/4f2(0)) such that (3.15) still holds true when o is replaced by

a.2 under H . For if such an estimate ;2 has been found, then (3.41)

remains valid when a2 is replaced by 2 under HO) and we can choose
0 n 0

C -52 E -)D + u )2/2 (4.2)

where u0 is defined by (u 0) = 1 00 The test (4.1) is asymptotically

similar with size a0"

The problem of estimating o is reduced to the problem of f(0), the

value of the density function of eI at zero.

It is easy to see that if an estimate 2 of 02 satisfiesn 0
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Then a will have the property required in Section 4.1. It is obvious
n

that if we can find an estimate fn(O) of f(O) such that

/ n(f (0) - f(O) -P 0, (4.4)
* n n

then ;2 (4f (O))-I satisfies (4.3).
n n

Choose e, e (0, 1/3d) in the definition of J* in Section 2.2. Since

1/3, we have ci > 2/3 in the definition of J~l. Take e > 1 - cl in

(3.1), then 1 - 1 < /3.

Choose £0 e (0, (£2-§)/4) (see (2.5)) and co > 0. Select out such

cells I in Jn satisfying the condition
ln o

x e I jxl cOn Co (4.5)

For convenience we shall denote all these cells by Jnl' 'nc n"

Define

= X' "()r+l)I n-l/3

Ini {: iYni(j) - i < , j= l,.,n' i=, .. ,c n .

Since

Xnl (j,^(r~l) = ,Xi~) ,^i)(r+l ) , i(&r+l)_ , Xnlia (4.6)
n n + n(4.6)

and from Theorem 2 we have

&(r+l) 0 (r+l)- 0 0n" /2
n 

p

Also, JXni(j)-Xnij < n , X'ij < con for i = 1, ... , cn ,,and bynini ni -0

Lemma 2, wpl X1ta >n , z I, cn for n large. We see from (4.6)

that

lim P(En) 1 1 (4.7)
n n
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where En is the event

En = jelni for some i=l,...,c' 4 Yni)>O}. (4.8)

When En occurs, the number of elements gni in Ini can be calculated from

the truncated observations of the dependent variable Y, and the quantity

g n
gn i-Igni

is well defined in En (can be calculated from the truncated samples when

En occurs).

Since

ni(j) " n eni(j)l IXni(j)ll(r+l)-Ld,

there exists constant A such that

lim P(E )- 1 (4.9)

n-p

where

E= {((Vi(J)" Xn~lj)&r+l) -en (j)l < An,/2c
nn ni( -'

j1, ...,nI, i =, ... cn. (4.10)

Now define an estimate of f(O) as follows: "

gn/(2n'3Nn), when En occurs
fn(0) -(4.11)fn 0 9 otherwise

Nn' = n, + .. + nc,

and proceed to show that this estimate satisfies (4.4). For this purpose,

put

V.
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gn (ab) = the number of elements in the set

and define

f (0) = g (-n 1 3 n 0  
,)2 n1/3 ~N)el 2 /2i3,nl n n

f n0)= gn(n 1/3 _2 c0 -l/2 .n-1 /3 +n N 12)(n-13N)

From the well-known result in the theory of density estimation (see [8].

Chapter 2) and the easy fact that

lim inf N'/n > 0, as.9 (4.12)
n-w n

under the assumption of Section 2.1, we have

f ni(0) -f(0) = 0(n 0 1 /3) (4.13)

Since
N-1~/6

fn()= (1 +0(n ))fn(0)

fn()= (1 +O(n 0 N -/ )n(0).

from (4.13) we have

f n2O) -f(0) = 0p (n N 1/

f n3 (0) - f(O) = 0 (nc0 )1/ (4.14)

On the other hand, it is easy to see that when n is large and the event

En n in occurs, we have

f n(O <fn(O) < n()
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Therefore, from (4.7), (4.9) and (4.14), we get

f n(0) - f(O) = 0p(n ). (4.15)

1/2- 2/2

But c n = Op(n ) (see (2.6)), and since co < (c2 -2/3)/4, we have

1/6 - 2c0 > 1/2 - 12/2. From this and (4.15), we finally get (4.4).
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